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Benchmark configuration interaction energies, geometries, dipole moments, and harmonic vibrational
frequencies are obtained for four low-lying electronic states of NH2

+ and for X
~

 2B1 NH2 by solving the
electronic Schrödinger equation exactly within a double-ζ plus polarization (DZP) basis set and re-
stricting the nitrogen 1s-like core orbital to remain doubly occupied. In addition, full quartic force
fields have been determined, and sets of anharmonic spectroscopic constants and fundamental fre-
quencies are reported for the a~ 1A1 state of NH2

+. Vertical and adiabatic ionization potentials of NH2

are also determined exactly within a DZP basis. The capability of less-complete electron correlation
treatments to match these exact, full configuration interaction (full CI) results is assessed. The effi-
cacy of obtaining anharmonic force fields at nonstationary geometries is also examined, and in agree-
ment with previous work, it is found that the self-consistent field method can provide high quality
cubic and quartic force constants when they are evaluated at the full CI equilibrium geometry. Both
the CCSD(T) and CASSCF-SOCI methods provide geometric and spectroscopic data in excellent
agreement with the Full CI results and are competitive in their reliability with more expensive pro-
cedures (e.g. CISDTQ). The second 1A1 state in C2v symmetry is predicted by the TZ2P(f,d)
CASSCF-SOCI wavefunction to be linear (thus properly labeled as c~ 1Σg

+ ), even though it is found
to be quasilinear at the DZP full CI level.
Key words: Full configuration interaction; Nitrenium ion; Quartic force fields; Ionization potentials.

In the interstellar medium, it is generally understood that atoms and atomic ions may
react to form molecules by (i) interaction on the surface of grains or (ii) two-body
radiative associations1. While radiative associations between species are slow, fast ion-
molecule reactions can occur as soon as there are suitable molecules present in the
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medium. The nitrenium ion, NH2
+, may be an important intermediate in an ion-molecule

pathway to create interstellar ammonia and the ammonium ion1. The dissociative ioni-
zation of N2 with He+ ions creates N+, which can react successively with H2 to event-
ually form NH2

+. NH2
+ can further react with H2 to eventually create NH4

+, which is able
to dissociatively recombine with an electron to form ammonia,

NH4
+  +  e−  →  NH3  +  H  . (1)

NH2
+ may also be formed via the reaction of atomic nitrogen with H3

+ (another common
interstellar species1b,1e

N  +  H3
+  →  NH2

+  +  H  , (2)

and then enter the ammonia creating reaction pathway.
While NH2

+ is an essential gas phase intermediate, it is also an important species for
solvolytic reactions, as it is analogous in many respects to methylene. In 1970, Gass-
man proposed that in solution, electron-deficient divalent nitrogen species such as
NH2

+ (or in general, NR2
+) may be involved in many reactions such as ring cleavages and

rearrangements similar to those which involve carbenes and carbonium ions2. Gass-
man’s work on the role of nitrenium ions as true interaction intermediates in some
reactions has continued to stir scientific interest3. Moreover, nitrenium ions NR2

+ con-
tinue to be of broad interest to organic chemists4. A detailed understanding of NH2

+

chemistry requires the exploration of ground and excited state potential energy surfaces
(PESs). Ab initio and experimental efforts have been fruitful in obtaining geometries,
vertical and adiabatic excitation energies, and rovibronic spectra for several low-lying
states of this ion.

The theoretical work to date has been comprehensive in its scope and achievements
due to the relatively small size of NH2

+ as well as its isovalency to the once controver-
sial methylene molecule5. In light of the volume of this previous work, we shall con-
centrate on more recent contributions to this system. One is referred to the work of
Stephens, Yamaguchi, Sherrill, and Schaefer6 for a summary of the early theoretical
studies.

The small size of NH2
+ allowed for substantial multi-reference configuration interac-

tion (MRCI) treatments as early as the late 1970s. Peyerimhoff and Buenker7 utilized
one such valuable technique – which they termed MRD-CI – in conjuction with a basis
set of double-ζ plus polarization (DZP) quality to construct PESs with respect to the
HNH bond angle and a fixed NH distance for fourteen electronic states of NH2

+. The
four lowest-lying electronic states were predicted to be X

~
 3B1, a

~ 1A1, b
~
 1B1, and c~ 1Σg

+
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with corresponding equilibrium bond angles of [150°, 108°, 155°, 180°] and adiabatic
excitation energies of [1.29 eV (29.9 kcal/mol), 2.03 eV (46.8 kcal/mol), 3.45 eV (79.6
kcal/mol)], respectively.

In 1987, Jensen, Bunker, and McLean applied large multiconfiguration self-consist-
ent field second-order CI (MCSCF-SOCI) wavefunctions with a 4s3p2d1f on N and
3s2p on H (4s3p2d1f/3s2p) contracted Gaussian basis to construct extensive PESs for
the X

~
 3B1, a

~ 1A1, and b
~
 1B1 states of NH2

+ (ref.8). Applying the Morse Oscillator–Rigid
Bender Internal Dynamics (MORBID) Hamiltonian to the X

~
 3B1 and a~ 1A1 ab initio

surfaces, they obtained a singlet–triplet splitting of 1.30 eV (30.0 kcal/mol), anhar-
monic vibrational frequencies, and rovibrational energy levels for both of these states.
In 1993, Jensen, along with Barclay and Hamilton, returned to the study of the X

~
 3B1

and a~ 1A1 state PESs of NH2
+ as well as those of CH2 (ref.9). Their work was a compari-

son of the vibrational energy levels computed by fitting several different rovibrational
Hamiltonians (such as MORBID) to ab initio and experimental PESs. A least-squares
fit of the MORBID Hamiltonian to the rovibronic transitions around ν3 measured by
Okumura, Rehfuss, Dinelli, Bawendi, and Oka10 (vide infra) produced a new potential
surface for X

~
 3B1 NH2

+. This surface was generated assuming the rotational quantum
number N to be zero. A further refinement of this surface was done in 1997, when
Jensen11 added N > 0 data fitted with the same potential function. This valuable study
explored the quasilinearity of the X

~
 3B1 state in some detail, and made the distinction

between “linear” and “bent” descriptions of this state. Using the linear bending quan-
tum number, ν2

linear, the bending fundamental was determined to be 321 cm–1.
Chambaud, Gabriel, Schmelz, Rosmus, Spielfiedel, and Feautrier12 calculated three-

dimensional PESs for the X
~

 3B1, a~ 1A1, and b
~
 1B1 states of NH2

+ using the complete
active space SCF MRCI (CASSCF-MRCI) method with Dunning’s correlation consist-
ent quadruple-ζ (cc-pVQZ) basis set. The X

~
 3B1 state surface was fit to give consider-

able dynamical information including geometric parameters, fundamental vibrations,
rovibronic energy levels (Ka = 0–3), electric dipole moment functions and transition
intensities. They also fit the a~ 1A1 and b

~
 1B1 states (which correlate to 1∆g at linearity)

with a variational Renner–Teller model to account for vibrational-electronic coupling
in this system. Osmann, Bunker, Jensen and Kraemer furthered the study of this
bent/quasilinear a~ 1A1–b

~
 1B1 system13. Their PESs were obtained using the CASSCF-MRCI

method in conjunction with a large averaged ANO basis set (7s7p4d3f/6s4p3d). Fitting
these with the rovibrational Hamiltonian incorporated in the RENNER program14 and
parametrizing the dipole moment functions along the surface, gave them detailed simu-
lations of the absorption spectrum for this system. These results represent perhaps the most
reliable theoretical description of the a~ 1A1 and b

~
 1B1 states to date. As of yet, little work has

been done on the elusive c~ 1Σg
+  state. However, recent SOCI results obtained with a

7s5p3d2f/5s3p2d basis provided by Stephens, Yamaguchi, Sherrill, and Schaefer6 yield
the most reliable prediction for the location of this state [Te(T0) = 3.36 (3.34) eV].
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Relatively few spectroscopic experiments exist for NH2
+. The first such study was

done by Dunlavey, Dyke, Jonathan and Morris, who took the HeI photoelectron spec-
trum of the X

~
 2B1 state of NH2 produced from the reaction of F with NH3 (ref.15). With

the help of ab initio methods (DZP SCF and CISD) they were able to identify three
bands corresponding to the X

~
 3B1, a

~ 1A1, and b
~
 1B1 states of NH2

+. Lying 11.46 eV (264
kcal/mol) – an adiabatic ionization potential (IP) – above the ground state of NH2 was
the X

~
 3B1 state of NH2

+. The a~ 1A1 state appeared at 12.45 eV (287 kcal/mol) yielding a
singlet–triplet separation of 0.99 ± 0.02 eV (22.8 ± 0.5 kcal/mol), a value quite differ-
ent from theoretical predictions. The b

~
 1B1 state was assigned to the band appearing at

13.68 eV, giving a b
~
–X

~
 separation of 2.22 eV (51.2 kcal/mol). The authors also pro-

posed a value of 840 ± 50 cm–1 for the bending vibrational frequency (ν2) of the X
~

 3B1

state. For the a~ 1A1 state, they acquired values of 2 900 ± 50 cm–1 and 1 350 ± 50 cm–1

for ν1 and ν2, respectively, while an estimate of 920 ± 150 cm–1 was given for ν2 of the
b
~
 1B1 state. Gibson, Greene and Berkowitz utilized photoionization mass spectrometry

to revise the adiabatic IPs of X
~

 2B1 NH2 determined by Dunlavey et al.15 to 11.14 ± 0.01 eV
(X
~

 3B1) and 12.445 ± 0.002 eV (a 1A1) above the X
~

 2B1 state of NH2 (ref.16). This
significantly altered the experimental singlet–triplet splitting of NH2

+ to 1.305 ± 0.01 eV
(30.1 ± 0.2 kcal/mol), a value in much better agreement with theory7,8. Consequently,
Jacox corrected the ∆E (b

~
 1B1 – X

~
 3B1) of Dunlavey et al. to 2.54 ± 0.02 eV (58.6 ± 0.5

kcal/mol)17. Most recently, Qi, Sheng, Zhang, Yu, and Li ascertained the first adiabatic
IP of X

~
 2B1 NH2 to be 10.78 ± 0.05 eV by combining the techniques of molecular beam

and vacuum ultraviolet synchrotron radiation photoionization mass spectroscopy18. Su,
Hu, Li, Wang, and Wen later pointed out in a theoretical work that the 0.36 eV devia-
tion of Qi et al.’s results from those of Gibson et al. may be due to an overestimation
of the proton appearance potential in their experiment19.

Using a difference frequency laser spectrometer and a velocity modulated detector,
Okumura et al.10 were able to measure the ν3 = 3 359.9 cm–1 absorption in the X

~
 3B1

state of NH2
+ generated in an N2/H2/He glow discharge. This was in excellent agreement

with the fundamental value of 3 363 cm–1 predicted by Jensen et al.8. Kabbadj, Huet,
Uy, and Oka later examined four hot bands in the same region as ν3 in the X

~
 3B1 state

vibrational spectrum using a similar technique20. In treating the “floppy” X
~

 3B1 state of
NH2

+ with a Hamiltonian appropriate for linear molecules, they were able to extract an
equilibrium rotational constant of 8.023 cm–1 which produces an NH bond length of
1.021 Å. An estimate of the bending frequency (ω2 = 439 cm–1) was made from the
value of the l-type doubling constant.

Recently, we have undertaken several efforts to provide full configuration interaction
(full CI) benchmarks for CH2 (refs21,22), C2 and CN+ (ref.23). There are few polyatomic
systems, other than CH2, for which full CI optimized geometries24,25 as well as dipole
moments and harmonic vibrational frequencies26,27 have been obtained. This is due to
the computational difficulty imposed by the factorial dependence of the number of con-
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figuration state functions (CSFs) on the number of electrons and orbitals in a full CI
procedure. Apart from experiment, though, the full CI method provides the only touch-
stone for theoretical methods. The full CI results represent the exact solution of the non-
relativistic electronic Hamiltonian within a truncated basis set under the
Born–Oppenheimer and frozen-core approximations. Today, the wealth of advances in
computer technology as well as improvements in full CI algorithms28,29 allows for a
greater variation in the production of these valuable benchmarks.

NH2
+ is an excellent candidate for this type of study as its structural and chemical

differences distinguish it from the isovalent CH2 molecule. The ground state of
methylene has a barrier to linearity ca 2 000 cm–1, while the X

~
 3B1 state of NH2

+ is
quasilinear to a greater degree with a 200 cm–1 barrier9,12. Thus, 3B1 methylene can
support several quanta of vibration in the bending potential, but the zero-point energy
of the bending fundamental lies well above the barrier to linearity in X

~
 3B1 NH2

+. NH2
+

is much more reactive than CH2, and its chemistry more resembles that of the carbo-
nium ion2,3. Of some interest is the c~ state of this molecule, which is the second state of
its spatial and spin symmetry (in the C2v point group), and as such, is not well described
by single-reference correlation procedures. Therefore, benchmark results for this state,
in addition to those previously obtained for CH2 (refs21,22) may be helpful for the cali-
bration of various excited state methods such as equation-of-motion coupled-cluster
(EOM-CC)30.

Additionally, there have been numerous efforts directed towards configuration selec-
tion schemes for systematic approaches to the full CI limit. Methods such as CI+PT
(ref.31) and CIPSI (ref.32) rely on the sparsity of the full CI Hamiltonian to generate a
reference CI space while perturbation theory is used to estimate the contributions of
neglected configurations. Wulfov proposed that the CI+PT method can reproduce full
CI energies, equilibrium geometries, and harmonic vibrational frequencies for a number
of diatomic molecules31b. While confirmation of these results with explicit full CI data
was not possible at the time, the recent DZP full CI study of C2 and CN+ by Leininger
et al.23 indicates that the CI+PT method certainly outperforms CISDTQ and CCSDT
while accurately reproducing the full CI energies, geometries, and harmonic vibrational
frequencies to [(C2,CN+) – (0.26,0.38) mEh, (0.0005,0.0008) Å, (3.4,3.6) cm–1] at a
dramatically reduced computational cost for these eight electron systems. Concern over
whether PESs computed from these techniques may display discontinuites motivated
them to elevate the correlation convergence of higher derivatives of the PES and anhar-
monic spectroscopic constants of C2 and CN+ at the DZP full CI level as goals toward
which these CI selection schemes might aspire. With the goal of helping the develop-
ment of new methods as well as providing additional insight into the effects of electron
correlation on a range of molecular properties, reported herein are DZP full CI bench-
mark vertical and adiabatic excitation energies, and harmonic frequencies for four low-
lying states of NH2

+. The full quartic force field, fundamental vibrational frequencies,
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and anharmonic spectroscopic constants of the a~ 1A1 state of NH2
+ are presented. Also,

full CI vertical and adiabatic IPs are given for the X
~

 2B1 state of NH2.

THEORETICAL

Electronic Structure Considerations

At linearity the electronic configuration of NH2
+ may be expressed as

(1σg)2(2σg)2(1σu)2(1πu)2  . (3)

In the ground state, the degenerate ππ configuration (3Σg
−) deviates from D∞h to C2v

symmetry, following Walsh’s diagrams for AH2 systems33, and the X
~

 3B1 electronic
state arises from the configuration

(1a1)2(2a1)2(1b2)2(3a1)(1b1)  . (4)

The 1∆g state which comes from Eq. (3) undergoes Renner–Teller splitting to form the
next two electronic states, a~ 1A1 and b

~
 1B1. While the lowest-lying electronic excited

state, a~ 1A1, can be described as

(1a1)2(2a1)2(1b2)2(3a1)2  , (5)

it is probably best represented by a two-configuration wave function

C1(1a1)2(2a1)2(1b2)2(3a1)2 + C2(1a1)2(2a1)2(1b2)2(1b1)2 (6)

to account for a second configuration which becomes equally important at linear ge-
ometries. It should be noted that the two CI coefficients C1 and C2 have opposite signs
and |C1| ≥ |C2|. The third electronic state, b

~
 1B1, arises from the same configuration as

the ground state; however the two open-shell electrons are singlet coupled rather than
triplet coupled. The fourth electronic state of NH2

+ considered in this study, c~ 1Σg
+  must

be represented at least by a two configuration reference due to the fact that it is the
second state of its symmetry (when distorted from linearity) and is subject to the possi-
bility of variational collapse of the wavefunction to the a~ 1A1 state34. This state may be
represented with the same two configurations as the a~ state, but having two CI coeffi-
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cients with the same sign and with |C1| ≤ |C2|. The X
~

 2B1 state of NH2 differs from that
of NH2

+ only in that the 3a1 orbital is doubly rather than singly occupied.

Computational Details

Zeroth-order descriptions for the lowest three electronic states may be obtained using
single-configuration restricted Hartree–Fock (RHF) or restricted open-shell Hartree–
Fock (ROHF) self-consistent-field (SCF) wavefunctions, while the c~ state requires a
two-configuration SCF (TCSCF) and is appropriately described as the second eigenvec-
tor of the TCSCF secular equation. Using these reference wavefunctions, dynamical
correlation effects were treated approximately using the configuration interaction
singles and doubles (CISD) method and, where possible, the coupled-cluster singles
and doubles (CCSD) approach35,36. The additional effects of connected triple excita-
tions on the CCSD model were estimated perturbatively according to the CCSD(T)
method37. For the X

~
 3B1 and a~ 1A1 states, it was possible to include the full triples

correction by employing the CCSDT method38.
In order to more closely approximate the full configuration interaction (full CI) limit,

the CI space is expanded to include through quadruple substitutions (CISDTQ). For the
c~ 1Σg

+  state, it was useful to also include through pentuple substitutions (CISDTQP).
Only a single-configuration reference was used for these wavefunctions, even for the
c~ 1Σg

+  state, due to the decreasing importance of the zeroth-order wavefunction in these
rather complete correlation procedures. For the a~ 1A1 state, the SCF reference wave-
function is based on the configuration of Eq. (3), while the (1a1)

2(2a1)
2(1b2)

2(1b1)
2

configuration is slightly more important in the bent conformation of the c~ 1Σg
+  state.

Therefore, CISDTQ and CISDTQP wavefunctions based on each of these configura-
tions are denoted CISDTQ I and CISDTQ II, and CISDTQP I and CISDTQP II, respec-
tively. Another type of wavefunction which has been shown to closely parallel the full
CI potential energy surface is the second-order configuration interaction wavefunc-
tion39 (SOCI) constructed as all single and double excitations out of the reference space
generated from a complete active space self-consistent-field40 (CASSCF) procedure. In
this study, the CASSCF wavefunctions were constructed with an active space compris-
ing six (valence) electrons in six (valence) molecular orbitals, denoted as (6,6). The
numbers of configuration state functions (CSFs) in C2v symmetry for the four states
were 51 (X

~
 3B1), 56 (a~ 1A1), 39 (b

~
 1B1), and 56 (2 1A1), respectively.

Using the full CI procedure (where the CI space includes all possible CSFs of the
proper spatial and spin symmetry), it was possible to obtain exact solutions of the elec-
tronic Schrödinger equation within the DZP basis and subject to the frozen-core con-
straint. These full CI wavefunctions were evaluated using the determinant-based CI
program, DETCI (ref.41), written by two of us (C. D. S. and M. L. L.) which has been
shown to be dramatically faster than our loop-driven graphical unitary group CI pro-
gram (LD-GUGA) for large-scale CI wavefunctions42,43.
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This study conjoins the standard Huzinaga–Dunning44,45 double-ζ basis augmented
with a set of Cartesian d-type polarization functions on each nitrogen [αd(N) = 0.80]
and a set of p polarization functions on each hydrogen [αp(H) = 0.75], denoted DZP,
with each method. The contraction scheme for this basis is N(9s5p1d/4s2p1d),
H(4s1p/2s1p), and it consists of 26 contracted Gaussian functions. Six cartesian d-type
and ten cartesian f-type functions were used throughout. A TZ2P(f,d) basis was em-
ployed which is comprised of standard Huzinaga44 triple-ζ sp sets augmented with d-
and f-type polarization manifolds on the nitrogen [αd(N) = 1.60, 0.40; αf(N) = 1.00]
and p- and d-type polarization manifolds on the hydrogen [αp(H) = 1.50, 0.375; αd(H) =
1.00]. The basis set consisted of 66 contracted Gaussian functions, the contraction
scheme being N(10s6p2d1f/5s3p2d1f) and H(5s2p1d/3s2p1d). The DZP basis is not
large enough to provide accurate results even when the electronic Schrödinger equation
is solved exactly within the space spanned by it, while the TZ2P(f,d) basis makes the
full CI intractable. However, the TZ2P(f,d) CASSCF-SOCI results will lend creedence
to our predictions, especially for the difficult c~ state of NH2

+.
In all correlated procedures, the core orbital (nitrogen 1s-like) was constrained to

remain doubly occupied. For the configuration interaction wavefunctions46, optimized
geometries and harmonic vibrational frequencies were determined using either analytic
Cartesian gradients47–49 evaluated with the GUGA CI program or internal coordinate
gradients and force constant matrices (FCMs) evaluated through central difference
techniques from energy points produced by the DETCI program41. All coupled-cluster
gradients and force constants were obtained numerically from energies. Finally, the
SCF and TCSCF results were obtained using analytic first and second derivative
methods50. The dipole moments computed in this study were determined with respect to
the center of mass.

To investigate the effects of electron correlation on the anharmonic constants of the
first three electronic states of NH2

+, finite-difference procedures were used to determine
complete quartic force fields from energies obtained at 34 displacements along the
molecular potential energy surface. The size of these displacements (±0.01 and ±0.02 Å
or ±0.02 and ±0.04 rad) are large enough to avoid numerical instabilities in the finite-
difference formulas, but small enough to prevent higher-order deterioration of the pro-
cedure. All nonzero quadratic, cubic, and quartic force constants in internal coordinates
were generated. The nonlinear transformation of the quartic force field from internal
coordinates to the Cartesian space was performed with the INTDER95 program51.
Force constants at nonstationary reference geometries were obtained in the same man-
ner and the PES was shifted via a term which is linear in the set of internal coordinates
used [(rNH1

 ± rNH2
), θHNH] eliminating residual nonzero gradients as well as rotational

contamination. This procedure was systematically investigated in the work of Allen and
Császár52. Application of second-order perturbation theory to the standard vibration–ro-
tation Hamiltonian53 containing a potential energy surface expansion through quartic
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terms allowed for the generation of vibration–rotation interaction (αr
B) and vibrational

anharmonic (χrs) constants. The αr
B constants are completely determined by the cubic

force field, while χrs requires quartic force constants as well. For an extensive dis-
cussion of second-order perturbation theory applied to asymmetric top molecules, one
is referred to the study performed by Clabo, Allen, Remington, Yamaguchi and
Schaefer54. The corresponding work on linear polyatomic molecules was carried out by
Allen, Yamaguchi, Császár, Clabo, Remington, and Schaefer55 in 1990.

The PSI ab initio program package56 was used for all SCF and CI procedures while
all CC computations were carried out using the ACESII (ref.57) suite of programs.

RESULTS AND DISCUSSION

Geometries

The equilibrium geometries, dipole moments, and harmonic vibrational frequencies of
NH2

+ and X
~

 2B1 NH2 are reported in Tables I–V. It is reasonable to expect that the
geometries presented here will not be in very good agreement with experiment, as the
DZP full CI level of theory should overestimate equilibrium bond lengths21. Studies of
small molecules have shown that it is important to balance the level of correlation
achieved in any theoretical method with an appropriately sized basis set58,59. Double-ζ
type basis sets are balanced by the SCF and CISD methods58, while those methods such
as CCSD and CCSD(T) are appropriately balanced by triple-ζ or larger basis sets59.
However, it is important to contribute to an ever growing pool of benchmarks for mole-
cular parameters other than total energies which allow for the quantitative examination
of approximate correlation methods.

At the DZP level, the equilibrium geometry trends for NH2
+ are similar to those found

for methylene21. Experimental data exist only for the X
~

 3B1 state. Note that DZP full CI
overestimates this state’s bond lengths by ca 0.01 Å and underestimates its bond angle
by as much as 3.8°. DZP full CI was more successful for CH2 bond angles (ca 1.8°
difference from experiment) due to the difference in the well depths of the bending
potentials between the two. Tables I–IV also contain equilibrium geometries deter-
mined using various approximate models of electron correlation. These results demon-
strate how improved treatments of electron correlation affect the equilibrium
geometries and converge upon the full CI values. The CISD [or (TC)CISD for the a~ and
c~ states] method tends to increase the N–H bond length by about 0.015 Å and alters the
bond angles by [+6.1°, –1.2°, –3.6°, and –2.0°] for the X

~
, a~, b

~
, and c~ states, respec-

tively, from the SCF (or TCSCF) values. The disconnected higher-order excitations
included in the CCSD model do not have as large an affect, increasing the bond length
by an average of 0.0014 Å and changing the bond angle by no more than 0.7° over the
CISD results. The perturbative triples correction provided by CCSD(T) lengthens the
N–H bond another 0.0006 Å, while the full triples correction of CCSDT adds an addi-
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TABLE I
Equilibrium geometries and harmonic vibrational frequencies of the 3B1 electronic ground state of the
nitrenium iona, NH2

+

Method Ref. re θe µe ω1(a1) ω2(a1) ω3(b2) ZPVE

DZP SCF 1.0230 143.08 0.877 3 478 1 098 3 721 11.863

DZP CISD 1.0381 149.13 0.786 3 329 840 3 573 11.068

DZP CCSD 1.0397 149.85 3 309 812 3 555 10.973

DZP CCSD(T) 1.0405 149.97 3 298 807 3 544 10.936

DZP CCSDT 1.0407 150.01 3 296 805 3 542 10.926

DZP CASSCF-SOCIb 1.0408 150.07 0.767 3 293 803 3 540 10.918

DZP CISDTQ 1.0407 149.99 0.769 3 295 806 3 541 10.925

DZP full CI 1.0408 150.00 0.769 3 294 806 3 541 10.923

TZ2P(f,d) CASSCF-SOCIb 1.0328 152.28 0.683 3 253 744 3 506 10.726

TZ3P(2f,2d)+2diff CISDc  6 1.0281 150.40 0.715 3 295 814 3 549 10.95 

6-311+G(3d,2p) MP2 1.025 149.4 

7s5p2d/2s1p MRD-
   CI+Qc,d,e  7 1.027 149.6 

4s3p2d1f/3s2p
   CASSCF-SOCI+Qb,c,d,f  8 1.0338 153.17 3 118 918 3 363

cc-pVQZ CASSCF-MRCIh 12 1.029 152.07 3 128 914 3 369

TZ2P CCSD(T) 63 1.032 150.5 3 264 831 3 504

7s7p4d3f/6s4p3d
CASSCF-MRCIf 13 1.0291 152.82 0.661 3 136 943 3 384 10.51 

MORBID fit to experimentg  9 1.0302 153.78 3 052 848 3 360

MORBID fit to experimentg 11 3 051  322j 3 360

Experiment 20 1.021 180.00  439j

Experiment 15 840 ± 50

Experimenti 10 1.029 165     3 359.9

a Bond lenghts in Å, bond angles in °, dipole moments (calculated with respect to the center of mass)
in D, vibrational frequencies in cm–1 and ZPVE in kcal/mol. Unless otherwise noted, theoretical vi-
brational frequencies are determined in the harmonic approximation (ω), and theoretical results were
obtained with the N 1s-like core frozen. b Second-order configuration interaction (SOCI) includes all
configurations having no more than two electrons in external orbitals (see ref.39). c One frozen-core
and one deleted virtual orbital. d +Q denotes the multireference Davidson correction for disconnected
quadruple substitutions (see ref.76). e Polynomial fit to the estimated full CI data. f Predictions using
the Morse oscillator-rigid bender internal dynamics (MORBID) Hamiltonian fit to ab initio data. Fre-
quencies are fundamentals. g Predictions using the MORBID Hamiltonian fit to experimentally ob-
served transitions. h Obtained with a variational potential energy function fit to ab initio data.
Frequencies are fundamentals. i  Bond length is r 0 value and bond angle is θ0 value. j Assumes
ν2

linear.
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TABLE II
Equilibrium geometries and harmonic vibrational frequencies of the a~ 1A1 state of the nitrenium iona,
NH2

+

Method Ref. re θe µe ω1(a1) ω2(a1) ω3(b2) ZPVE

DZP SCF 1.0342 109.58 2.363 3 471 1 506 3 566 12.213

DZP TCSCF 1.0348 108.37 2.246 3 468 1 546 3 554 12.248

DZP CISD 1.0522 106.65 2.285 3 288 1 467 3 383 11.635

DZP (TC)CISD 1.0522 107.14 2.228 3 283 1 444 3 381 11.592

DZP CCSD 1.0545 106.71 3 256 1 449 3 357 11.526

DZP CCSD(T) 1.0551 107.00 3 246 1 428 3 350 11.471

DZP CCSDT 1.0550 107.31 3 246 1 413 3 352 11.452

DZP CASSCF-SOCIb 1.0554 107.25 2.220 3 239 1 413 3 346 11.434

DZP CISDTQ 1.0550 107.33 2.220 3 244 1 412 3 351 11.446

DZP full CI 1.0551 107.35 2.218 3 243 1 410 3 350 11.439

TZ2P(f,d) CASSCF-SOCIb 1.0499 107.96 2.124 3 180 1 389 3 272 11.209

TZ3P(2f,2d)+2diff
   (TC)CISDc  6 1.0445 107.99 2.110 3 239 1 429 3 324 11.42 

6-311+G(3d,2p) MP2 1.043 107.1 

4s3p2d1f/3s2p
   CASSCF-SOCI+Qb,c,d,e  8 1.0510 108.37 3 027 1 289 3 111

cc-pVQZ CASSCF-MRCIf 12 1.046 108.38 3 050 1 327 3 133

7s7p4d3f/6s4p3d
   CASSCF-MRCIg 13 1.04  109   2.088 3 068 1 321 3 125 11.41 

Experiment 15             2 900 ± 50   1 350 ± 50

a Bond lenghts in Å, bond angles in °, dipole moments (calculated with respect to the center of mass)
in D, vibrational frequencies in cm–1 and ZPVE in kcal/mol. Unless otherwise noted, theoretical vi-
brational frequencies are determined in the harmonic approximation (ω), and theoretical results were
obtained with the N 1s-like core frozen. b Second-order configuration interaction (SOCI) includes all
configurations having no more than two electrons in external orbitals (see ref.39). c One frozen-core
and one deleted virtual orbital. d +Q denotes the multireference Davidson correction for disconnected
quadruple substitutions (see ref.76). e Predictions using the Morse oscillator-rigid bender internal dy-
namics (MORBID) Hamiltonian fit to ab initio data. Frequencies are fundamentals.  f Obtained from
a variational Renner–Teller model fit to ab initio data. Frequencies are fundamentals. g Obtained
with the RENNER program system (see ref.14). Rovibrational function fit to ab initio data. Frequen-
cies are fundamentals.
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tional 0.0002 Å. Extending the CI expansion to full triples and quadruples in CISDTQ
lengthens the bonds by 0.0020–0.0030 Å above the CISD results. For the first three
electronic states, the pentuples and sextuples included in the full CI serve to add
≤0.0001 Å to the bond lengths and change the bond angle by  ≤0.02°.

For the c~ state the error is more pronounced, and CISDTQ wavefunctions based on
the first and second configurations of Eq. (6) (CISDTQ I and CISDTQ II) yield bond
lengths 0.0007 Å and 0.0002 Å too short and bond angles differing from the full CI
values by +4.9° and –2.1°, respectively. Full pentuples are needed to even approach the
level of accuracy afforded by CISDTQ wavefunctions for the lower three states. Be-
cause of the near linearity of the c~ state (within a DZP basis) the first and second
configurations of Eq. (6) are approximately degenerate, necessitating a multi-reference
treatment. When single and double excitations are included from a CASSCF (6,6) ref-
erence, the N–H bond lengths obtained are very close to the full CI results, differing by
0.04% or less at a much lower cost than CISDTQ. For the X

~
 and a~ states, the CCSD(T)

and CCSDT methods do nearly as well as the CASSCF-SOCI technique or better; on
the other hand, these methods are not applicable to the b

~
 and c~ states.

TABLE III
Equilibrium geometries and harmonic vibrational frequencies of the b

~
 1B1 state of the nitrenium iona,

NH2
+

Method Ref. re θe µe ω1(a1) ω2(a1) ω3(b2) ZPVE

DZP SCF 1.0246 160.69 0.580 3 439 607 3 720 11.103

DZP CISD 1.0385 157.11 0.698 3 314 664 3 582 10.808

DZP CCSD 1.0399 156.49 3 299 679 3 568 10.787

DZP CASSCF-SOCIb 1.0410 156.09 0.727 3 283 694 3 552 10.762

DZP CISDTQ 1.0409 156.44 0.718 3 286 678 3 554 10.749

DZP full CI 1.0409 156.44 0.718 3 286 678 3 554 10.747

TZ2P(f,d) CASSCF-SOCIb 1.0325 160.54 0.557 3 246 543 3 530 10.462

TZ3P(2f,2d)+2diff CISDc  6 1.0280 160.92 0.539 3 281 564 3 562 10.59 

4s3p2d1f/3s2p
   CASSCF-SOCI+Qb,c,d,e  8 1.0344 164.07

cc-pVQZ CASSCF-MRCIf 12 1.029 160.92 3 083 702 3 304

7s7p4d3f/6s4p3d
   CASSCF-MRCIg 13 1.03 159   0.586 3 091 3 291

Experiment 15                                   920 ± 150

a–g See footnotes to Table II.
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The most accurate experimental geometry of the ground state [re = 1.0302 Å, θe =
153.78°] is that given by the MORBID fit to experimental transitions around the ν3

vibrational mode9. The bond length and angle reported by Okumura and coworkers
assumes rigid rotor behavior, and these are vibrationally averaged r0 and θ0 values, thus
not necessarily comparable to theory10. The most reliable theoretical geometries are
those given by methods that are multi-reference in nature. Although the best equili-
brium bond length was obtained by the variational treatment of the ground state PES
generated with the cc-pVQZ CASSCF (6,6)-MRCI method12, the bond angle given by
Jensen et al.8 who fit their ab initio surface with the MORBID Hamiltonian is in better
agreement (perhaps fortuitously) with the experimental θe. The TZ2P(f,d) CASSCF
(6,6)-SOCI geometry is also in very good agreement with the experimental equilibrium
results. While the experimental bond length deduced by Kabbadj et al.20 is 0.009 Å
shorter than that given by Barclay et al.9, it was obtained using a linear rovibrational
Hamiltonian fit to the experimental absorptions around ν3, and so it should not be
strictly comparable to the other equilibrium geometries.

TABLE IV
Equilibrium geometries and harmonic vibrational frequencies of the c~ 1Σg

+  (1A1) state of the nitrenium
iona, NH2

+

Method Ref. re θe µe ω1(σg,a1) ω2(πu,a1) ω3(σu,b2) ZPVE

DZP TCSCF 1.0253 180.00 0.000 3 435 555 3 728 11.828

DZP (TC)CISD 1.0396 178.01 0.065 3 305 127 3 587 10.033

DZP CASSCF-SOCIc 1.0428 175.07 0.180 3 267 315 3 551 10.197

DZP CISDTQ Ib 1.0421 180.00 0.000 3 276  61 3 560  9.859

DZP CISDTQ IIb 1.0426 172.98 0.255 3 271 450 3 552 10.396

DZP CISDTQP Ib 1.0427 175.64 0.159 3 269 281 3 553 10.154

DZP CISDTQP IIb 1.0428 174.35 0.206 3 268 363 3 551 10.267

DZP full CI 1.0428 175.12 0.178 3 267 314 3 551 10.197

TZ2P(f,d) CASSCF-SOCIc 1.0352 180.00 0.000 3 218 213 3 510  9.924

TZ3P(2f,2d)+2diff
   (TC)CISDd  6 1.0299 180.00 0.000 3 260 253 3 551 10.46 

a Bond length in Å, bond angles in °, dipole moments (calculated with respect to the center of mass)
in D, vibrational frequencies in cm–1 and ZPVE in kcal/mol. Vibrational frequencies (ω) are deter-
mined in the harmonic approximation and theoretical results were obtained with the N 1s-like core
frozen. b Roman numeral I (II) signifies that the SCF reference for the c~ state is the first (second)
configuration in Eq. (6) (see text). c Second-order configuration interaction (SOCI) includes all con-
figurations having no more than two electrons in external orbitals (see ref.39). d One frozen-core and
one deleted virtual orbital.
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The structures of the a~ 1A1 and b
~
 1B1 states of NH2

+ have not been determined ex-
perimentally. However, Gibson et al.’s16 observation of a single prominent vibrational
component in the Rydberg series convergent upon the a~ state led them to believe that it
should have a structure very similar to that of X

~
 2B1 NH2 [r0 = 1.024 Å, θ0 = 103.3°]60.

Indeed, the high-level MRCI calculations8,12,13 show this to be true [re ≈ 1.05 Å, θe ≈
108°]. Owing to the strongly bent structure, we do not observe the large variation in
bond angle with method and basis set that appears in the X

~
, b

~
, and c~ states. With

regards to the b
~
 1B1 state, the Renner–Teller model fits to its PES by Chambaud et al.12

and Osmann et al.13 provide comparable re and θe values of 1.03 Å and ca 160°, respec-
tively. The large basis CISD results of Stephens et al.6 and our TZ2P(f,d) CASSCF
(6,6)-SOCI results concur with these MRCI values.

While slightly bent at the DZP full CI level, the c~ state is linear with a small bending
frequency at other levels, including the large basis set CISD results of Stephens et al.6

and the TZ2P(f,d) CASSCF (6,6)-SOCI results given here. This appears to be in agree-
ment with recent extensive MRCI computations on the c~ 1A1 state of CH2 performed by
Bauschlicher61, who found that improvements in the correlation treatment or the basis

TABLE V
Equilibrium geometries and harmonic vibrational frequencies of the 2B1 electronic ground state of
NH2

a

Method Ref. re θe µe ω1(a1) ω2(a1) ω3(b2) ZPVE

DZP SCF 1.0135 104.64 2.062 3 638 1 646 3 739 12.900

DZP CISD 1.0313 102.55 1.980 3 443 1 574 3 543 12.237

DZP CCSD 1.0343 102.34 3 400 1 564 3 505 12.107

DZP CCSD(T) 1.0356 102.17 3 380 1 557 3 487 12.043

DZP CCSDT 1.0358 102.16 3 377 1 556 3 484 12.033

DZP CASSCF-SOCIb 1.0375 101.96 1.957 3 365 1 559 3 459 11.983

DZP CASSCF′-SOCIb,c 1.0364 102.14 1.963 3 370 1 556 3 476 12.011

DZP CISDTQ 1.0359 102.15 1.959 3 376 1 556 3 482 12.029

DZP full CI 1.0361 102.14 1.959 3 374 1 555 3 480 12.021

TZ2P(f,d) CASSCF-SOCIb 1.0291 102.37 1.840 3 357 1 555 3 422 11.915

DZP′ full CId,e 25 1.032 102.9 

a Bond length in Å, bond angles in °, dipole moments (calculated with respect to the center of mass)
in D, vibrational frequencies in cm–1 and ZPVE in kcal/mol. Vibrational frequencies (ω) are deter-
mined in the harmonic approximation and theoretical results were obtained with the N 1s-like core
frozen. b Second-order configuration interaction (SOCI) includes all configurations having no more
than two electrons in external orbitals (see ref.39). c The prime emphasizes that a different active
space (7 electrons in 8 molecular orbitals) was used. d One frozen-core and one deleted virtual orbi-
tal. e The prime emphasizes that the DZP′ basis differs from the one used in this work.
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set tend to favor the linear geometry over the bent structure. In the case of c~ 1Σg
+  NH2

+,
more complete correlation treatments with a DZP basis appear to favor the bent struc-
ture, while addition of higher angular momentum polarization functions to the basis set
(f to N and d to H) yields a linear geometry regardless of correlation treatment. The
geometry of this state has not been confirmed experimentally.

The same trends are observed for X
~

 2B1 NH2 (Table V) as the theoretical methods
approach the correlation limit. The DZP full CI geometry is very similar to that ob-
tained by Anglada and Bofill’s previous DZP full CI study, the dissimilarity being
attributed to slight differences in the polarization functions and frozen orbital approxi-
mations used25. Disappointingly, the DZP CASSCF (7,6)-SOCI method only slightly
outperforms the CCSD approach in the reproduction of the full CI properties. This is
attributed to an active space containing only the valence electrons in valence orbitals,
which is not the optimum choice for NH2. Analysis of the SCF orbital energies as well
as the CISD natural orbital populations indicates that an extension of the space to in-
clude one a1 and the one b1 (Rydberg) orbital, (7 e–/8 MO), should provide a more
suitable active space for this radical. Optimizing the geometry under the new con-
straints reduces the error to 0.0003 Å and <0.01° at still only two-thirds of the cost of
the CISDTQ method. For this open-shell system, the very efficient CCSD(T) method
does exceedingly well, with an error of only 0.0005 Å and 0.03° in the bond length and
angle, respectively.

Dipole Moments

The dipole moments, µe, of NH2
+ and NH2 are calculated with respect to the center of

mass in Debye (1D ≈ 3.335 . 10–30 C m). Because their geometries and electronic con-
figurations are similar, the X

~
 3B1 and b

~
 1B1 dipole moments differ by only 0.05 D at the

DZP full CI level. There is a small variation in their values with correlation, and the
dipole of the X

~
 3B1 state appears to decrease with correlation. The dipole moment is

largest (2.219 D at DZP full CI) for the a~ 1A1 state due to double occupancy of the
in-plane 3a1 orbital. Again, the dipole appears to decrease with correlation. The slight
bend from linearity in the c~ state due to the small DZP basis allows for a dipole mo-
ment (0.178 D) at the DZP full CI level. The addition of higher angular momentum
functions serves to remove this distortion. There is a wide variation in the predicted
values, and full pentuples are required in a single reference treatment to even begin to
approach the full CI value for the c~ 1Σg

+  state. The CASSCF (6,6)-SOCI method, on the
other hand, reproduces the full CI value within 0.002 D. The dipole of X

~
 2B1 NH2 also

decreases with the inclusion of correlation, and the values smoothly converge to the full
CI result of 1.959 D.
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Harmonic Vibrational Frequencies

While various surface fitting and vibrational analysis techniques exist to generate fun-
damental frequencies which are directly comparable to experiment, theoretical vibra-
tional frequencies are usually limited to the harmonic approximation. Harmonic
frequencies are generally within a few percent of the fundamentals when anharmonic
contributions are small, and they tend to follow Badger’s rule, i.e. smaller bond lengths
correlate to larger vibrational frequencies62. For example, SCF and CISD methods tend
to provide good geometry predictions when paired with the DZP basis set, while they
generally overestimate experimental frequencies by ca 10 and 5%, respectively58. From
Table I, the DZP CISD method overestimates the antisymmetric stretching frequency
by 6.3%. When the level of correlation is increased within the DZP basis, the bond
lengths are overestimated, thus bringing the harmonic frequency into better agreement
with the experimental fundamental. The remaining (considerable) error is attributed to
the neglect of anharmonicity (vide infra) and basis set incompleteness.

At the full CI level, the frequency ordering among the four electronic states of NH2
+

is very similar to that of CH2 (ref.21). The only difference lies with the fact that the
equilibrium bond lengths of the four states are nearly the same and Badger’s rule62 is
not strictly followed for the antisymmetric stretching frequencies. For NH2

+, it is found
that although re(a

~ 1A1) > re(c
~ 1Σg

+ ) > re(b
~
 1B1) > re(X

~
 3B1), the antisymmetric frequen-

cies are in the order ω3(b
~
 1B1) > ω3(c

~ 1Σg
+ ) > ω3(a

~ 1A1) > ω3(X
~

 3B1).
For the quasilinear ground state of NH2

+, the SCF method predicts stretching har-
monic frequencies in relatively good agreement with full CI, with an error of only 5.6
and 5.1% for ω1 and ω3, respectively. The bending frequency, however, is overesti-
mated by 36.2%, which indicates the drastic need to account for electron correlation.
The CISD method improves the bending frequency considerably, bringing the mean
absolute percent error in ω to only 2.1%. Electron correlation beyond the CCSD
method has little quantitative effect on the frequencies, which are within 0.4% of the
full CI values. CCSD(T), CASSCF (6,6)-SOCI, CCSDT, and CISDTQ are at most a
few wavenumbers from the full CI results. The situation for the a~ 1A1 state is similar;
however, the bending frequency should not be too problematic as this state is strongly
bent. In support of this theory, (TC)SCF predicts a bending frequency within 9.6% of
the full CI value of 1 410 cm–1. Again, (TC)CISD removes the majority of the error due
to neglect of electron correlation. Apparently, the CCSD and CCSD(T) methods have
some difficulty with the a~ state bending potential, as the predicted frequency remains
overestimated by 2.8 and 1.3%, respectively. The CASSCF (6,6)-SOCI, CCSDT, and
CISDTQ methods all have comparable accuracy, and provide frequencies in error by
less than 0.2%. The quasilinear b

~
 1B1 state frequencies exhibit a sensitive dependence

to the degree of electron correlation. The SCF and CISD methods both underestimate
the bending frequency by 10.5 and 2.1%, respectively. The two-determinant CCSD
method36 actually outperforms the CASSCF (6,6)-SOCI method in this respect, as the
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latter method overestimates ω2 by 16 cm–1. Similar to the first two electronic states, the
CISDTQ frequencies agree remarkably well with the full CI results, as pentuple and
hextuple excitations do little to affect the geometries of these states.

While the stretching frequencies smoothly converge upon the full CI results with
increases in the excitation level, the bending frequency of the c~ state displays a strong
dependence on the reference wavefunction. These effects are similar to those seen pre-
viously in our benchmark studies on CH2 (refs21,22). The two CISDTQ predictions differ by
389 cm–1 corresponding to the 7.0° difference in bond angle and are at least 135 cm–1

from the full CI value. Adding full pentuples improves the situation, but the frequencies
are still at least 30 cm–1 different from full CI. This demonstrates the necessity for a
multireference treatment such as the CASSCF (6,6)-SOCI method, which narrows the
error in the bending vibration to 1 cm–1.

For the ground state, the most accurate experimental data exists for the antisymme-
tric stretching frequency10. The value for ω3 given by the TZ3P(2f,2d)+2diff CISD
method is within 5.6% of experiment6. However, when MRCI methods are employed
with large basis sets and anharmonicity is accounted for with various rovibrational
Hamiltonians8,12,13 exemplary accord with experiment (<0.8% error) is achieved for this
frequency. Few experimental data exist for the other frequencies. The bending fre-
quency is perhaps the most interesting, as the molecule exists in a dynamical conforma-
tion; and neither a linear nor a bent characterization is particularly appropriate. In
general, previous work has concentrated on describing the molecule as bent, while the
recent work of Jensen11 and Osmann et al.13 contend that one should consider both bent
and linear aspects of this molecule. The real problem with quasilinear species lies in the
choice of a basis. The quantum numbers defining a bent or a linear species’ energy
levels are slightly different, especially with regards to the bending fundamental. In the
harmonic approximation, ω2

linear is exactly half of ω2
bent, therefore, as Jensen points out11,

the “bending fundamental energy” will depend on one’s choice of quantum numbers to
label the molecular energies. Kabbadj et al.20, who fit their absorption spectra under the
assumption of a linear molecule, arrived at an ω2

linear of 439 cm–1, while Dunlavey et al.15

determine a value of 840 ± 50 cm–1 for ν2
bent. Jensen11 assigns a value of 322 cm–1 to

ν2
linear and when quanta are also assigned to ν2

bent he arrives at 847 cm–1. Osmann et al.13

report ν2
linear = 335 cm–1 and ν2

bent = 943 cm–1. While the MORBID potential used in both
of these studies can treat the bent and linear forms of the X

~
 state without prejudice,

clearly, a better description of quasilinear molecules is warranted to avoid this di-
lemma. At present, the recommendation for experimentalists is to search for the ben-
ding absorption in the 300–400 cm–1 range of the spectrum.

The a~ 1A1 state, on the other hand, does not provide as large a challenge to theory, as
it is strongly bent. The fundamental vibrations determined by Jensen et al.8, Chambaud
et al.12, and Osmann et al.13 are all in reasonable agreement with each other and with
experiment. This occurs in spite of the neglect of Renner–Teller coupling to the b

~
 state
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in the 1987 work. Note that the harmonic frequencies predicted by the TZ2P(f,d)
CASSCF (6,6)-SOCI method are usually within 5% of these results.

Dunlavey et al.15 estimated a value of 920 ± 150 cm–1 for the bending vibration of the
b
~
 1B1 state. However, this value appears to be too high, even if we consider this very

floppy molecule to be bent. The bond angle of this state is larger than that of the ground
state, and so we would expect that the bending frequency should decrease rather than
increase. Theory supports this assumption, and the value of 702 cm–1 is a more reliable
target for this fundamental12. Notice that for quasilinear molecules, account for nondy-
namical correlation effects and larger basis sets are needed in general to achieve con-
sistency in the results with respect to experiment. Primarily, multireference methods
provide the most balanced treatment of these species, as the 3a1 and 1b1 orbitals ap-
proach degeneracy as the molecule approaches linearity. Also, larger basis sets will
provide better opportunity for these orbitals to mix properly in the quasilinear configu-
ration.

For the ground state of NH2, the trend in vibrational frequencies is similar to that
seen in the first three states of NH2

+. In general, the frequencies decrease with correla-
tion, and the CISDTQ values are very close to the DZP full CI results. An increase in
the CASSCF active space from six to eight molecular orbitals dramatically improves
agreement between the SOCI and full CI results. If one cannot afford a SOCI wave-
function, the CCSD(T) wavefunction produces harmonic frequencies a mere 0.2% in
error from full CI for this strongly bent, radical species.

Anharmonicity

Due to the large volume of data generated in any study of anharmonicity of polyatomic
systems, we choose to present the results of only the a~ 1A1 state of NH2

+ in Tables VI–IX
and we relegate the data for the X

~
 3B1 and b

~
 1B1 states to supplementary material64.

Also, the particular vibrational perturbation theory treatment which is used herein
becomes suspect for these two quasilinear species, as will be discussed below, therefore
the anharmonic constants determined for the a~ 1A1 state should be the most reliable and
are sufficient to establish correlation trends. Also, the constants quoted herein are used
merely to provide insight into the effects of electron correlation on anharmonicity and
are of limited use in the interpretation of experimental observations owing to the small
DZP basis set used.

When the correlation limit is attained, errors due to basis set deficiencies and anhar-
monicity can remain in the theoretically predicted vibrational frequencies. While exten-
sion of the basis set size should provide a better balance to the full CI wavefunction, in
general this makes the calculations unmanageable. It is possible, though, to examine the
effects of anharmonicity at the DZP full CI level via an evaluation of the full quartic
force field using second-order spectroscopic perturbation theory. The foundation of this
theory lies in the fact that vibrational and rotational terms are largely separable in the
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TABLE VI
Theoretical force constants of a~ 1A1 NH2

+ obtained with the DZP basis seta

Force
constant

(TC)SCF (TC)CISD CCSD CCSD(T) CCSDT
CAS-
SOCI

CISDTQ Full CI

f11 6.8276 6.1160 6.0125 5.9748 5.9777 5.9538 5.9735 5.9664

f12 0.18535 0.22269 0.22412 0.22349 0.22137 0.22241 0.22153 0.22112

f22 0.69986 0.63487 0.64291 0.62554 0.61166 0.61218 0.61052 0.60897

f33 6.8509 6.2112 6.1248 6.0959 6.1011 6.0807 6.0980 6.0930

f111 –30.64 –28.22 –27.91 –27.83 –27.85 –27.78 –27.84 –27.83

f112 –0.5204 –0.4810 –0.4680 –0.4612 –0.4555 –0.4571 –0.4556 –0.4545

f122 –0.4480 –0.4159 –0.4391 –0.4342 –0.4271 –0.4269 –0.4272 –0.4279

f133 –30.67 –28.16 –27.81 –27.72 –27.74 –27.658 –27.73 –27.71

f222 –0.7140 –0.7068 –0.6787 –0.7019 –0.7421 –0.7418 –0.7437 –0.7471

f233 0.1501 0.1501 0.1600 0.1520 0.1464 0.1461 0.1446 0.1439

f1111 123 112 111 110 110 110 110 110

f1112 0.588 0.607 0.602 0.608 0.619 0.666 0.616 0.624

f1122 0.344 0.490 0.557 0.558 0.565 0.519 0.564 0.562

f1133 123 112 110 110 110 110 110 110

f1222 0.904 1.16 1.08 1.12 1.13 1.14 1.13 1.12

f1233 –0.379 –0.341 –0.357 –0.337 –0.314 –0.285 –0.317 –0.322

f2222 –1.07 –1.05 –0.965 –1.09 –1.26 –1.28 –1.26 –1.27

f2233 –1.05 –1.03 –1.00 –0.988 –0.982 –1.03 –0.983 –0.976

f3333 124 113 112 111 111 111 111 111

Mean absolute % error from Full CI

Quadratic 14.5 2.4 2.1 1.0 0.2 0.4 0.2 0.0

Cubic 8.1 3.6 4.4 2.4 0.5 0.6 0.2 0.0

Quartic 15.6 5.9 5.2 2.6 0.7 3.8 0.6 0.0

a Quadratic, cubic, and quartic force constants are reported in symmetrized internal coordinates. The
units for the force constants are consistent with energy measured in aJ, stretching coordinates in Å,
and bending coordinates in radians.
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energy expressions of well-behaved systems like the a~ state of NH2
+ or the ground state

of the amino radical53b,65. Quasilinear molecules though, are not amenable to this type
of analysis, as the large amplitude bending vibration, ν2, is strongly coupled with rota-
tion about one of the molecular axes.

The quadratic, cubic, and quartic force constants of the a~ 1A1 state of NH2
+  are

presented in Table VI in symmetrized internal coordinates. In general, it is assumed
that highly correlated methods combined with large basis sets are necessary for the
reproduction of experimental force constants. Indeed, correlation appears to have quite
a drastic effect on those derivatives presented here. The mean absolute percent error
from full CI in the (TC)SCF quadratic, cubic, and quartic force constants is 14.5, 8.1,
and 15.6%, respectively. This error is reasonable and is in the range expected for force
constants obtained via RHF theory. It is well known that semidiagonal cubics and quar-
tics require a more sophisticated theoretical treatment to acquire accurate values than
diagonal force constants. This is certainly the case here; for example, the f1111 stretch-

TABLE VII
Theoretical vibration–rotation interaction constants (αr

(A,B,C)) and rotational constants (A, B, C) in cm–1

of a~  1A1 NH2
+. All theoretical results were obtained with the DZP basis seta

(TC)SCF (TC)CISD CCSD CCSD(T) CCSDT CAS-SOCI CISDTQ Full CI

α1
A  0.3913  0.4962  0.5070  0.5190  0.5233  0.5264  0.5248  0.5260

α2
A –2.5606 –2.4849 –2.3463 –2.4652 –2.6129 –2.5986 –2.6213 –2.6334

α3
A  0.8317  0.9204  0.9128  0.9349  0.9507  0.9517  0.9524  0.9541

α1
B  0.2097  0.2081  0.2102  0.2100  0.2092  0.2097  0.2093  0.2095

α2
B –0.0936 –0.0864 –0.0962 –0.0848 –0.0685 –0.0687 –0.0676 –0.0660

α3
B  0.1319  0.1233  0.1252  0.1244  0.1232  0.1235  0.1233  0.1234

α1
C  0.1374  0.1472  0.1501  0.1511  0.1511  0.1516  0.1512  0.1514

α2
C  0.1299  0.1251  0.1276  0.1259  0.1244  0.1246  0.1243  0.1242

α3
C  0.1088  0.1194  0.1194  0.1215  0.1224  0.1228  0.1226  0.1228

Ae 26.0893 24.5051 24.1568 24.2883 24.4764 24.4195 24.4833 24.4895

Be 11.8765 11.6678 11.6834 11.6263 11.5823 11.5834 11.5788 11.5729

Ce  8.1613  7.9043  7.8748  7.8626  7.8620  7.8566  7.8611  7.8590

A0 26.7581 25.0393 24.6200 24.7939 25.0459 24.9798 25.0554 25.0661

B0 11.7525 11.5453 11.5638 11.5015 11.4504 11.4511 11.4463 11.4395

C0  7.9732  7.7084  7.6762  7.6634  7.6631  7.6571  7.6620  7.6598

a Rotaional constants reported are at equilibrium (Be), and correscted for zero-point vibrational energy
(B0).
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ing constant is 11.8% from the full CI value of 110 aJ/Å4 at the (TC)SCF level, while
f1122 stretch-bend constant is underestimated by 39%. Dynamical correlation recovered
by the (TC)CISD method greatly improves the agreement with full CI, eliminating 80%
of the error in the quadratic force field and ca 60% of the error in the cubic and quartic
force fields. Little additional improvement is seen in the CCSD force fields; however,
the CCSD(T) method removes another 50% of the remaining error from the (TC)CISD
values. At this level, full CI force constants which include only stretching modes are
reproduced to within 1% – within the numerical significance of the method – while
those constants involving the bending coordinate still show significant variation (e.g.
14.2% for f2222). While the quadratic and cubic force constants obtained with the
CASSCF (6,6)-SOCI method are of essentially the same quality as those predicted with
the CISDTQ and CCSDT methods (error <1%), the semi-diagonal fourth derivatives
are actually slightly worse (on average) than those of the CCSD(T) method. As is ex-
pected, the CCSDT and CISDTQ methods perform remarkably well in comparison to
full CI. From these results, it would be reasonable to assume that a rather complete
treatment of electron correlation is needed to provide accurate results for anharmonic
force fields.

TABLE VIII
Theoretical anharmonic constants (χrs) and fundamental frequencies of a~ 1A1 NH2

+. All quantities are
reported in cm–1. All theoretical results were obtained with the DZP basis set

(TC)SCF (TC)CISD CCSD CCSD(T) CCSDT
CAS-
SOCI

CISDTQ Full CI Exp.

χ11 –34.02 –37.56 –38.41 –38.83 –38.82 –39.08 –38.89 –38.98

χ12 –15.46 –15.48 –15.92 –16.35 –16.34 –16.64 –16.38 –16.49

χ13 –137.11 –148.35 –150.31 –151.54 –151.48 –152.11 –151.65 –151.78

χ22 –18.49 –19.58 –18.17 –19.91 –22.38 –22.57 –22.48 –22.73

χ23 –24.22 –22.90 –24.19 –23.50 –22.41 –22.76 –22.39 –22.32

χ33 –37.99 –42.07 –42.45 –42.90 –42.95 –43.18 –43.01 –43.08

ν1 3 324 3 126 3 096 3 084 3 084 3 077 3 083 3 080 2 900±50a

ν2 1 489 1 385 1 393 1 369 1 349 1 348 1 347 1 345 1 350±50a

ν3 3 397 3 212 3 185 3 176 3 179 3 172 3 178 3 176

∆1 –144.3 –157.0 –159.9 –161.6 –161.6 –162.5 –161.8 –162.1

∆2 –56.8 –58.4 –56.4 –59.7 –64.1 –64.8 –64.4 –64.9

∆3 –156.6 –169.8 –172.2 –173.3 –172.9 –173.8 –173.0 –173.2

a See ref.15.
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An issue which remains in this benchmark study is the difference between error due
to an incomplete treatment of electron correlation versus error due to an improper
choice of reference geometry. A longstanding controversy exists which pits a phenom-
enological view of quantum chemistry versus an empirical one. The problem of
whether to evaluate force constants at optimized equilibrium geometries or at ex-
perimental equilibrium structures is (albeit poorly appreciated), according to Pulay et
al.66, “…the most difficult problem confronting the systematic ab initio calculation of
force constants”. Recently, several studies have examined this dilemma in detail, and
the following arguments are expanded in the 1993 work of Allen and Császár52. The
total energy [U(r)] of a molecule consists of two parts which are of opposite sign, the
electronic energy (Ee) and the nuclear–nuclear repulsion energy (Vn). While we can
solve for the Vn term exactly, the Ee term is approximated by various methods. This
situation results in an unbalanced procedure for calculating force constants based on a
cancellation of errors. The Ee and Vn contributions to U′′(r) nearly cancel each other,
but, in higher order the contributions of Vn become dominant. This cancellation at sec-
ond order results in very poor quadratic force constants at the SCF level. Be that as it
may, due to the dominance of Vn at third and fourth order, improvements in correlation
generally offer little improvement in the cubic and quartic force constants when evalu-
ated at the same equilibrium geometries. This underappreciated notion should present a
powerful alternative for anharmonic force field evaluations. Although it is certainly
possible to calculate cubic and quartic force constants for NH2

+ with correlation treat-
ments as complete as full CI within the DZP basis set, the lack of analytic second and
higher derivatives for most correlated methods means that obtaining these quantities
with a reasonably sized basis set (including f functions, for example) at even the CCSD
level for larger molecules such as butane remains a computational challenge. A prob-
lem with this method is that the molecule is no longer at a stationary point on the PES,
i.e., residual gradients remain which must be dealt with in some fashion. Herein, we
eliminate these forces as well as rotational contamination by modifying the PES so as
to have a minimum at the new reference geometry. This shifting is linearly dependent
on our internal coordinate set; however, as there is no ambiguity in the choice of coordi-
nates for NH2

+, we expect the results to be reasonable. The Cartesian projection scheme,
which is invariant to one’s choice of internal coordinates and is described in detail in
Allen and Császár’s work52 provides an alternative treatment of this “non-zero force
dilemma” for strongly bonded molecular systems, such as the a~ state of NH2

+, and we
will consider its performance for the prediction of fundamental frequencies below.

Table IX contains the (TC)SCF force constants evaluated at the full CI equilibrium
geometry. Overall, the geometry shift reduces the mean per cent error by ca 23% com-
pared to the (TC)SCF force constants in Table VI. Note that the main improvement lies
in the diagonal force constants and those semi-diagonal cubics and quartics that deal
only with stretching terms. For example, the f1111 value when calculated at the full CI
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geometry is exactly that obtained at the full CI level, within the numerical significance
of the method. Those force constants involving the bending coordinate are not im-
proved when evaluated at the full CI geometry, in fact, the agreement decreases some-
what for f12, f122, f222, and f1233. This result is in accord with previous studies on the
anharmonic force fields of F2O (ref.52) and N2O (refs52,67), in which the dominant diag-
onal stretching constants are most affected by changes in the geometric structure, while
the coupling constants require a more sophisticated correlation treatment. And so, even
though the barrier to linearity of the a~ state is approximately 5 000 cm–1 (ref.9) it ap-
pears that the bending potential is still difficult to accurately represent without signifi-
cantly accounting for electron correlation effects. In fact, even the CCSD(T) method
still underestimates f2222 by 12.6% at the full CI geometry. By freezing the structure to
that of the full CI, it is possible to see exactly which force constants depend on corre-
lation and which are affected primarily by geometry. Császár and Allen68 found the
same to hold true in a study of core correlation effects in N2, except their method of
choice was CCSD(T) rather than full CI.

The theoretical vibration–rotation interaction constants (αr
B) and rotational constants

for a~ 1A1 NH2
+ are presented in Table VII. According to spectroscopic perturbation the-

ory, vibrational and rotational terms are properly separable if the αr
B constants have a

magnitude on the order of 10–2 of the corresponding rotational constants69. All of the
vibration–rotation constants appear to be well-behaved in this case. Although there is a
rather strong coupling of the bending vibration with the molecular a axis, α2

A is approxi-
mately 10% of the rotational constant Ae, and while slightly suspect, is still within a
reasonable range for perturbation theory. Similar behavior is seen when perturbation
theory is applied to the quartic force field of the a~ 1A1 state of CH2 (ref.54). Correlation
has a marked effect on these constants, and the α’s describing coupling between ben-
ding and rotation appear to be very difficult to pinpoint. CCSD(T) appears to model the
coupling between stretching vibrations and rotation to within 2% of full CI; however,
the α2 values are still overestimated by 28.5%. The higher level CASSCF (6,6)-SOCI,
CCSDT, and CISDTQ methods eliminate this error and all deviate from full CI to
virtually the same degree.

The marked change in rotational constants that denotes a severe change in geometry
when correlation is accounted for would seem to suggest that a proper choice of refer-
ence geometry should improve results for these vibration–rotation interaction constants.
This turns out not to be the case. The (TC)SCF results for the α constants evaluated at
the equilibrium full CI geometry are actually slightly worse, on average, than those
calculated at the stationary (TC)SCF geometry. Nevertheless, it has been noted70 that
these interaction constants are strongly dependent on one’s choice of quadratic force
constants as well. Without an excellent quadratic force field, it is nearly impossible to
extract accurate anharmonic constants from the SCF approach. To test this contention,
the (TC)SCF cubic and quartic force constant were spliced to the full CI quadratics, and
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indeed, the vibration–rotation interaction constants obtained with this approach are
superb, with the mean absolute error decreasing to 4.2, 13.8, and 2.2% for αr

A, αr
B, and

αr
C, respectively. This competes fairly well with CCSD as well as CCSD(T).
The anharmonicity constants (χrs) and fundamental frequencies of a~ 1A1 NH2

+ are
reported in Table VIII. The ∆ values are the total anharmonicities. The correlation trend
for these values is similar to that of the α constants. In general, the approximate
methods underestimate anharmonicity effects. The constant χ23 is the only exception
which is overestimated by 8.5% at the (TC)SCF level, and does not come within 2% of
the full CI value until treatments as complete as CCSDT are utilized. Also note that the
anharmonicity constants involving the bending term are the most troublesome, with
CCSD(T) still underestimating χ22 by 12%. Fortunately, those mixing terms involving
the bend, χ13 and χ23, are small, and do not adversely affect the total anharmonicities,
∆1 and ∆3, to any large extent. Even the diagonal bending constant is rather small, and
so overall a reasonable value for ∆2 is attained. (TC)SCF appears to uniformly underes-
timate anharmonicity by 11.2% and overestimate the fundamental frequencies by 8.5%.
Again, dynamical correlation recovered by (TC)CISD substantially improves agree-
ment with full CI – by 54% for χrs and 78% for the fundamentals. The improvement in
the fundamental frequencies is similar to that seen in the harmonic frequencies when
correlation is accounted for. For CCSD(T) the fundamentals are in error from full CI by
a mere 0.6%, even though the total anharmonicity values are in error by 2.8%, which is
almost totally due to the troublesome bending constants. The fundamentals predicted by
this method (as well as those obtained with the CASSCF (6,6)-SOCI, CCSDT,
CISDTQ, and full CI approaches) are in excellent agreement with those reported by
Chambaud et al.12 and Jensen et al.8. This result is suspect, though, as the use of a
rather complete correlated method like CCSD(T) in conjunction with the DZP basis
will substantially overestimate equilibrium bond lengths, thus artificially lowering the
values for predicted fundamentals.

It is reasonable to expect that the success afforded by evaluating the (TC)SCF anhar-
monic force field at the full CI equilibrium geometry should again provide an improve-
ment in the anharmonicities and fundamental frequencies predicted by this method. In
fact, the harmonic frequencies are substantially enhanced as well, as shown in Table IX.
(TC)SCF is able to produce harmonic vibrational frequencies within 2.8% of the full CI
when the (TC)SCF quadratic force field is obtained at the full CI geometry. This is a
substantial improvement, and is in excellent competition with even the CCSD(T)
method for the stretching vibrations. The frequency ω2 is still overestimated by 7.4%,
indicating the need for electron correlation. As with the α constants, the anharmonicity
constants are not improved when the geometry is naively shifted. The values of the
fundamental vibrations, following the enhancement of the harmonics, are now within
3.2% of the full CI fundamentals. By re-evaluating the anharmonicities and fundamen-
tals with the full CI quadratic and (TC)SCF cubic and quartic force constants, the re-
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sults are very encouraging. The χ’s are now within 9.0% of full CI, and the fundamen-
tals are in error by a scant 0.3%, of course following the fact that the harmonic vibra-
tions are exactly those of the full CI. Alternatively, one could determine the bending
fundamentals after shifting the PES using the Cartesian projection scheme outlined in
1993 by Allen and Császár. When applied to this system, one arrives at a better descrip-
tion of the stretching potentials, and ν1 and ν3 are reproduced to within 0.5 and 0.1% of
full CI, respectively. However, due to the extensive curvilinearity of the bending mo-
tion, subsequent projections of the molecule into Cartesian space to remove internal
coordinate dependencies and rotational variances do not perform as well. The bending
fundamental predicted with such a treatment (1 533 cm–1) is in error by 14% from full
CI, which is substantially worse than that obtained even at the (TC)SCF equilibrium
geometry. Again, though, use of the full CI quadratic constants substantially improves
this situation, and the bending fundamental drops to 1 431 cm–1. From these results, it
is easy to see why obtaining SCF anharmonic force fields at nonstationary reference
geometries is an important issue which should be explored further.

When the quartic force field of the X
~

 3B1 state of NH2
+ is evaluated, SCF provides

reasonable results for the diagonal stretching terms. In spite of that, the bending and
stretch–bending force constants are substantially in error (many are of the wrong sign),
with f2222 being underestimated by nearly 800%! By shifting the geometry to that of the
full CI, the dominant diagonal stretching and stretch–stretch coupling force constants
are improved and are essentially equal to those predicted by full CI; though the overall
SCF force field is of dubious quality. Here again, the correlation dependence of indi-
vidual force constants can be determined by evaluating the SCF force field at the exact
geometry. The correlation trends of the quasilinear X

~
 3B1 and b

~
 1B1 force fields are

similar to those for the a~ 1A1 state; however much more electron correlation is needed
to nail down the difficult stretch–bend semi-diagonal cubic and quartic force constants.
For these difficult states, one really needs a treatment at least as complete as CCSD(T)
to yield accurate descriptions of their PESs. Due to the strong vibration–rotation coup-
ling in these molecules, the second order spectroscopic perturbation theory is not re-
liable, and can really only give reasonable results for stretching anharmonicities. The
vibrational analyses of Jensen et al.8,11 and Chambaud et al.12, respectively, should be
much more reliable as they are not biased toward either the bent or linear extremes11.
The interested reader is referred to the supplementary material for more information64.

Energetics

Total energies are presented in Table X. All energies in the present study were deter-
mined at equilibrium geometries, while some previous studies have used non-equili-
brium geometries. For these latter studies, we denote a single-point energy computed
with method A at a geometry optimized using method B as A//B.
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More chemically relevant are the adiabatic excitation energies, Te and T0, given in
Table XI. Unlike methylene, the theoretical studies of NH2

+ appear to have concentrated
equally on the singlet–triplet gap, ∆E (a~ 1A1 – X

~
 3B1), and the second singlet–triplet

gap, ∆E (b
~
 1B1 – X

~
 3B1). T0 (a

~ 1A1) has been experimentally established with photoioni-
zation mass spectroscopy as 30.1 ± 0.2 kcal/mol (1.305 ± 0.01 eV)16. In general, the
DZP basis yields excitation energies which are 2 kcal/mol too high, a result which is
slightly better than the 3 kcal/mol error for similar calculations on methylene21. Follow-
ing our theme of comparison to the full CI, the single configuration SCF method over-
estimates Te (a

~ 1A1) by 14 kcal/mol, an error which is considerably reduced by the
(TC)SCF method. On the other hand, the single reference Hartree–Fock treatment of
the b

~
 state does remarkably well, yielding only an error of 0.12 kcal/mol for Te (b

~
 1B1).

Yet even a two-configuration SCF treatment of the c~ state deviates by 10.4 kcal/mol
from full CI, necessitating the addition of dynamical correlation to the wavefunction.
While improving Te (c

~ 1Σg
+ ) dramatically, the (TC)CISD method reduces the error in Te

(a~ 1A1) and Te (b
~
 1B1) by only 0.5 and 0.1 kcal/mol, respectively. Nearly the same

trends were seen for CH2 (ref.21). Note that, as another resemblance to CH2, Te (a
~ 1A1)

actually lies below the full CI value owing to the overcompensation of non-dynamical
correlation in the (TC)CISD approach for the a~ 1A1 state.

Single reference DZP CCSD overestimates Te (a
~ 1A1) by 1.1 kcal/mol, as it can not

account for the importance of the second configuration of the a~ state. While not as good
as CISD for Te (b

~
 1B1), two-determinant CCSD (ref.36) does do reasonably well and

overestimates by only 0.36 kcal/mol. Connected triples added via CCSD(T) and the full
triples of CCSDT decrease the error in Te (a

~ 1A1) to 0.38 and 0.13 kcal/mol, respec-
tively. While the CISDTQ method provides excitation energies in excellent agreement
with full CI for all but the difficult c~ state (for which the error is ca 0.4 kcal/mol), the
CASSCF (6,6)-SOCI method outperforms CISDTQ for all but the b

~
 state, where it is in

error by 0.24 kcal/mol.
The most reliable experimental value for T0 (a

~ 1A1) is 30.1 ± 0.2 kcal/mol. However,
this is not the “best” value for comparison to theory. Theory, in general, can give Te

values but its T0 values are calculated from an estimate of the ZPVE obtained within the
harmonic approximation. Other deficiencies include the neglect of relativistic effects as
well as corrections for the Born–Oppenheimer approximation. With this in mind, the
TZ2P(f,d) CASSCF (6,6)-SOCI method gives T0 = 30.025 kcal/mol (1.302 eV), a value
within experimental error. Jensen et al.8 and Osmann et al.13, with their anharmonic fits
to the ground and excited state PESs, zero-point correct their energies using fundamen-
tal values for the vibrations, and achieve T0 values in excellent agreement with experi-
ment 30.53 and 30.06 kcal/mol, respectively. Without ZPVE corrections, it is difficult
to quantify the accuracy of many of the assesments of ∆E (a~ 1A1 – X

~
 3B1). But an

estimate of +0.5 kcal/mol for the ∆ZPVE is reasonable, and in general, the MRCI
method combined with a sizeable basis provides high accuracy, while the Møller–
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TABLE XI
Relative energies Te in kcal/mol for the three lowest-lying electronic excited states of nitrenium.
Zero-point corrected values T0 are in parentheses

Method Ref.       a~ 1A1       b
~
 1B1       c~ 1Σg

+

DZP SCF 45.68 (46.03) 48.11 (47.35)

DZP (TC)SCFa 30.83 (31.21) 48.11 (47.35) 92.15 (92.12)

DZP (TC)CISDa 31.27 (31.79) 48.01 (47.75) 82.57 (81.54)

DZP CCSD 32.46 (33.02) 48.59 (48.40)

DZP CCSD(T) 31.71 (32.25)

DZP CCSDT 31.46 (31.99)

DZP CASSCF-SOCIb 31.37 (31.88) 48.47 (48.31) 81.85 (81.13)

DZP CISDTQ Ic 31.40 (31.92) 48.22 (48.05) 82.17 (81.10)

DZP CISDTQ IIc 31.40 (31.92) 48.22 (48.05) 82.15 (81.63)

DZP Full CI 31.33 (31.85) 48.23 (48.05) 81.75 (81.02)

TZ2P(f,d) CASSCF-SOCIb 29.54 (30.02) 44.62 (44.36) 77.94 (77.14)

TZ3P(2f,2d)+2diff (TC)CISDa,d  6 28.74 (29.21) 43.44 (43.08) 78.18 (77.19)

TZ3P(2f,2d)+2diff SOCI//
   TZ3P(2f,2d)+2diff (TC)CISDa,d  6 28.97 (29.44) 44.04 (43.68) 77.44 (76.95)

6-311+G(3d,2f,2p) MP4(SDTQ)//
   6-311+G(3d,2p) MP2 31.8

12s9p8d1f/5s2p MC-CEPA 75 30.63 44.33

7s5p2d/2s1p MRD-CI+Qd,e,f  7 29.9 46.8 79.6

4s3p2d1f/3s2p
   CASSCF-SOCI+Qb,d,e,g  8 29.95 (30.53) 44.024

cc-pVQZ CASSCF-MRCIb,h 12 29.14 43.64

7s7p4d3f/6s4p3d
   CASSCF-MRCIi 13 29.16 (30.06) 43.55 (46.14)

Experiment 15 (22.8 ± 0.5) (51.2)

Experiment 16 (30.1 ± 0.2)

a (TC) designates a two-configuration reference for the a~ and c~ states; otherwise a one-configuration
reference. b Second-order configuration interaction (SOCI) includes all configurations having no
more than two electrons in external orbitals (see ref.39). c Roman numeral I (II) signifies that the SCF
reference for the c~ state is the first (second) configuration in Eq. (6) (see text). d One frozen-core and
one deleted virtual orbital. e The prime emphasizes that the DZP′ basis differs from the one used in
this work. f +Q denotes the multireference Davidson correction for disconnected quadruple substitu-
tions (see ref.76). g Predictions using the Morse oscillator-rigid bender internal dynamics (MORBID)
Hamiltonian fit to ab initio data. h Obtained from a variational Renner–Teller model fit to ab initio
data. i Obtained with the RENNER program system (see ref.14). Rovibrational function fit to ab initio
data.
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Plesset and MC-CEPA methods, even when used in conjunction with very extensive
basis sets, yield values which are slightly less satisfactory.

Dunlavey et al.15 claimed to have observed the appearance of the b
~
 1B1 state at 13.68 eV

in their spectrum. This gives a T0 for the b
~
 1B1 – X

~
 3B1 splitting of 2.22 eV (51.2

kcal/mol). Gibson et al.16 did not see evidence for this state, and based on their correc-
tion of Dunlavey and coworkers’ first adiabatic IP of X

~
 2B1 NH2, T0 (b

~
 1B1) is listed as

2.54 eV (58.6 kcal/mol) in Jacox’s compilation17. While the b
~
 1B1 state is highly

quasilinear and is affected by both Renner–Teller interactions with the a~ 1A1 state and
spin-orbit interactions with the X

~
 3B1 state, the agreement achieved for T0 (a

~ 1A1) by
rovibrational Hamiltonian fits to MRCI surfaces generated for the X

~
 and a~ states implies

that this experimental value is too large. The two Renner–Teller treatments12,13 of the
b
~
 state PES produce very similar Te (b

~
 1B1) values, and 46.14 kcal/mol is a more re-

liable estimate for T0 (b
~
 1B1).

The TZ3P(2f,2d)+2diff SOCI excitation energies of Stephens et al.6 are within a few
tenths of a kcal/mol for the a~ state. In a similar study on isovalent CH2, Yamaguchi et al.71,
using the same method and basis set, achieved comparable accuracy for the a~ and b

~

states. This suggests that their Te (T0) results for the state of NH2
+  [77.44 (76.95)

kcal/mol] and CH2 [59.51 (59.08) kcal/mol] may have analogous accuracy. The
TZ2P(f,d) SOCI excitation energy for the c~ state is in good agreement with Stephens
and coworkers6, while that of Peyerimhoff et al.7 appears slightly overestimated, prob-
ably due to the small basis set and constrained geometries used.

Vertical and Adiabatic Ionization Potentials

Generally, an accurate prediction of a molecule’s ionization potential (IP) using con-
ventional ab initio theory is difficult as it involves determining the small energy dif-
ference between a species with n electrons and its cation with n–1 electrons72. Thus, it
is necessary to recover large amounts of the correlation energy using rather computa-
tionally expensive methods and sizeable basis sets. New inexpensive techniques for
calculating IPs, including density functional theory, G2 methods, and Green’s function
approaches like MCSTEP (ref.73), have been applied in recent years with some success.
To assist in the calibration of these methods, full CI benchmarks for the vertical ioniza-
tion potentials of CH2 were provided by Bauschlicher and Taylor74 in 1987. In the same
vein, we provide adiabatic and vertical ionization potentials at the DZP full CI level for
X
~

 2B1 NH2 in Table XII.
The full CI agreement with the experimental IPs is fairly poor, therefore when using

convergent ab initio methods, larger basis sets should be used for reliable determination
of these quantities. Single- or multi-reference Hartree–Fock treatments clearly can not
predict reliable IPs, as the values are usually in error from full CI by 1.0 eV. Dynamical
correlation added above the CISD level is adequate to come within 0.1 eV of the full
CI results. The coupled-cluster methods are nearly as successful as CISDTQ at repro-
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ducing the full CI values with the largest error within 0.045 eV (1.0 kcal/mol). The
CASSCF-SOCI results are slightly less satisfying than CISDTQ. However, the error for
all predicted IPs from this method are at worst 0.06 eV (1.4 kcal/mol).

The TZ2P(f,d) CASSCF-SOCI results should provide reasonable predictions for the
vertical and adiabatic IPs of X

~
 2B1 NH2. Comparison to the experimental values of

Gibson et al.16 reveals that our adiabatic IPs are in error by 5.4 kcal/mol (0.23 eV) for
both ∆E (X

~
 3B1 NH2

+ – X
~

 2B1 NH2) and ∆E (a~ 1A1 NH2
+ – X

~
 2B1 NH2). We can reasonably

expect that the error in the TZ2P(f,d) CASSCF-SOCI results for the b
~
 1B1 and c~ 1Σg

+

states will be similar. Also notice that the less conventional approaches to the ioniza-
tion potential problem, such as G2 theory63 and MCSTEP (ref.73), provide comparable
accuracy to our SOCI results. Hopefully, more definitive experimental IPs can be ob-
tained for the b

~
 state.

CONCLUSIONS

We have reported optimized geometries, harmonic vibrational frequencies, dipole mo-
ments, and energies for the X

~
 3B1, a

~ 1A1, b
~
 1B1, and c~ 1Σg

+  states of NH2
+ and for X

~
 2B1

NH2 with the full CI method using a DZP basis set. Ionization potentials of the ground
state of NH2 and full quartic force fields for the a~ 1A1 state of NH2

+ were also reported.
These full CI benchmarks allow one to examine the effects on molecular property pre-
dictions caused by various approximations in the treatment of electron correlation. For
“floppy” molecules such as 3B1 or 1B1 NH2

+, an analysis of current and previous data
leads to the conclusion that nondynamical correlation is necessary to pinpoint their
structures, frequencies, and spectroscopic constants. While the CASSCF (6,6)-SOCI
method appears to parallel the full CI surface well and is competitive with CISDTQ and
CCSDT, one must carefully choose an appropriate active space when determining
quantities like ionization potentials, for which the electronic environment differs from
one species to the next. While not as accurate as the extensive CI calculations, the
CCSD(T) method is a viable, comparatively inexpensive alternative where it can be
applied, and it yields predictions in good agreement with full CI. For spectroscopic
data, the CCSD(T) method performs very well, reproducing full CI results within 1%
for harmonic and fundamental frequencies and within 3% for most vibration–rotation
interaction (αr

B) and anharmonicity (χrs) constants of the a~ 1A1 state. It is recommended
that the best available equilibrium geometry be used be used for force field evaluations.
By a careful choice of reference geometry, very accurate cubic and quartic force con-
stants can be obtained even at the Hartree–Fock level. Also, to obtain highly accurate
anharmonic constants via RHF, the use of higher-level quadratic force constants is
strongly recommended, if possible. The results herein should be seen as encouraging
for the production of highly accurate spectroscopic constants and fundamental frequen-
cies at a less-than-expected computational cost for larger systems. In addition, the ex-
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plicit full CI benchmark data for higher-order force constants should aid the develop-
ment of selected CI methods and their correlation extrapolations.
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